
1

Register Transfer Level

CSE3201

RTL
• A digital system is represented at the register

transfer level by these three components
1. The set of registers in the system
2. The operation that are performed on the data stored

in the registers
3. The control that supervises the sequence of

operations in the system.
• The operations executed on the information

stored in the registers are elementary
operations and performed in parallel during
one clock cycle.

2

RTL

• Comma is used to separate 2 or more
operations that are executed in the same
time
If(T3=1) then (R2←R1, R1←R2)

• That is possible with registers that have
edge triggered flip-flop

• Increment R1 then store it in R2
R2←R1+1

RTL in HDL
assign s=A+B;

always @(A or B)
s=A+B;

always @ (posedge clock)
begin

RA=RA+RB;
RD=RA;

end

always @ (negedge clock)
begin

RA<=RA+RB;
RD<=RA;

end

Blocking procedural
assignment, new value of
RA is assigned to RD

Non-blocking procedural
assignment, old value of
RA is assigned to RD

Continuous assignment,
for combinational
circuits only, output can
not be a reg

3

HDL Operations

• Arithmetic: + - * / %
• Logic (bit wise): ~ & | ^
• Logical ! && ||
• Shift >> << { , }
• Relational > < == != >= <=
• In shifting, the vacant bits are filled with

zeros
• L

Loop Statements

•
integer count

initial

begin

count = 0;

while (count <16)

#5 count = count+1;

end

initial

begin

clock = 1’b0;

end

repeat (16)

#5 clock = ~ clock;

end

4

Loop Statements
module decoder

input [1:0] IN;

output [3:0]Y;

reg [3:0]Y;

integer I;

always @(IN)

for (I=0; I<=3; I=I+1)

if (IN == I) Y[I]=1;

else Y[I]=0;

endmodule

Synthesis

• Logic synthesis tools interpret the source
code and translate it into an optimized
gate structure.

• Statement like assign s=a&b is translated
into an AND gate

• Statement like assign s=a+b is translated
into adder

• Statemen like assign y=s? in_1:in_2 is
translated into a 2-to-1 multiplexer

5

Synhesis

• Always may imply combinational or
sequential circuit based on the event
control expression (level or edge)
always @(L1 or L0 or S)

if (S) Y=I1;
else Y=I0;

Is translated into a 2-to-1 multiplexer
• If the event control is “posedge”, that is a

synchronous sequential circuit

Develop specification

HDL description

Simulate/verify HDL

correct
N

Simulate netlist/model

Production masks

synthesisSynthesis
netlist

Gate
model

testbench

Compare

match
Y

6

Algorithmic State Machine (ASM)

Data processing
path, manipulates
data in registers

Initiates a sequence of
commands to the
datapath, may use status
conditions from the
datapath

ASM

• ASM is similar to flowchart in the sense
that it specifies a sequence of procedural
steps and decision paths for an algorithm.

• However, ASM is interpreted differently
than a flowchart. While the flow chart is
interpreted as a sequence of operations,
ASM describes the sequence of events as
well as the timing relationship between the
states (as we will see shortly).

7

The state is given a symbolic name (T3) (name may be inside the box)

Binary code for the assigned state (011)

The operations that are performed in this state R←0; and START could
be an output signal is generated to start some operation

Operation happens when the machine makes a transition from T3 to
next state

State Box

Decision Box

8

Conditional Box
Input to the decision box
must come from one of the
exit paths of a decision
box.

The register operation or
outputs listed inside the
conditional box are
generated during a given
state, if the input condition
is satisfied of course

Depending on E, R is
cleared or left unchanged

ASM Block

ASM block is a structure consisting of one
state box and all the decision and
conditional boxes connected to its exit path.

Each block in the ASM describes the state
of the system during one clock-pulse
interval.

The operations within the state and
conditional boxes are executed while the
system is in state T1 The same clock pulse
transfer the system into T2, T3, or T4

One entrance

If flow chart, A is incremented, then E
is tested

9

Timing Consideration

Design Example
• Design a system with 2 flip-flops E and F, and one 4

bit binary counter (A3, A2, A1, A0).
• A start signal initiates the operation by clearing A and

F.
• Then the counter is incremented by one starting from

the next clock pulse and continues to increment until
the operation stops. A3 and A4 determine the
operations.

– If A2 = 0, E is cleared and continue
– If A2=1, E is set; then if A3=0 continue, if A3=1 F is set to 1 on

the next clock cycle.
• If start = 0, the system stays in the initial state,

otherwise repeat

10

Example

Asynchronous erset
Synchronous
reset

11

12

RTL Description

DG1= S_1 A2 A3

DG0= S_1+S_Idle Start

Set_E=S_1 A2

Clr_E=S_1 A’2
Set_F=S_2

Clr_A_F=Start S_Idle

Incr_A=s_1

13

S_1

HDL Description

• The description could be on three different levels
– Behavioral description on the RTL level
– Behavior description on the algorithmic level
– Structural description

• Note that the algorithmic level, is used only to
verify the design ideas in the early stages. Some
of the constructs might not be synthesizable

• Following RTL behavior description

14

Binary Multiplier
• We did this before

using combinational
circuit (adders,
gaters, ..).

• Use one adder and
shift registers.

• Instead of shifting
multiplicand to the
left, shift the partial
product to the right.

23 10111

19 10011

10111

10111

00000

00000

10111

437 110110101

15

16

17

Using Sequence register and
a decoder

18

One-Hot Design

• Every state is represented by a flip flop
• Only one contains a value of 1 at any time
• Simple but uses more FF

19

Design with multiplexers

• The previous design consists of flip-flops,
decoder, and gates.

• Replacing gates with multiplexers results
in a regular pattern of the design.
– First level contains multiplexers (possibly

added gates, but only one level.
– The second level is the registers to hold the

present state information
– The last stage has a decoder that provides a

separate output for every state

20

Multiplexer input condition
Present State next State I/P inputs

G1 G0 G1 G0 cond. MUX1 MUX2

0 0 0 0 w’

0 0 0 1 w 0 w

0 1 1 0 x

0 1 1 1 x’ 1 x’

1 0 0 0 y’

1 0 1 0 yz’ yz’+yz=y yz

1 0 1 1 yz

1 1 0 1 y’z

1 1 1 0 y y+y’z=y+z y’z+y’z’=y’

1 1 1 1 y’z’

21

Counting the number of 1’s

• The system counts the number of 1’s in
R1, and set R2 accordingly.

• The bits in R1 are shifted one at a time,
checking if the shifted out bit is 1 or 0, and
incrementing R2

• Z is a signal to indicate if R1 contains all
0’s or not.

• E is the output of the flip-flop (the shifted
out bit).

?

22

E could not be checked
in the same block as T2
since the shift to E will
not happen unstill the
end of the cycle.

23

Control (counting of 1’s)

Present Next Conditions MUX inputs

State State

G1 G0 G1 G0 MUX1 MUX2

0 0 0 0 S’

0 0 0 1 S 0 S

0 1 0 0 Z

0 1 1 0 Z’ Z’ 0

1 0 1 1 1 1

1 1 1 0 E’

1 1 0 1 E E’ E

24

