Register Transfer Level

CSE3201

RTL

» Addigital system is represented at the register
transfer level by these three components
1. The set of registers in the system

2. The operation that are performed on the data stored
in the registers

3. The control that supervises the sequence of
operations in the system.

* The operations executed on the information
stored in the registers are elementary
operations and performed in parallel during
one clock cycle.

RTL

« Comma is used to separate 2 or more
operations that are executed in the same
time
IT(T3=1) then (R2«R1l, R1<R2)

* That is possible with registers that have
edge triggered flip-flop

e Increment R1 then store it in R2
R2«R1+1

RTL in HDL

Continuous assignment,

assign s=A+B; for combinational
circuits only, output can
always @(A or B) not be a reg
S=A+B;
always @ (posedge clock) Blocking procedural
begin assignment, new value of
RA=RA+RB; RA is assigned to RD
RD=RA;
end
Non-blocking procedural
always @ §”eged9e clock) assignment, old value of
begin RA is assigned to RD
RA<=RA+RB;
RD<=RA;

end

HDL Operations

e Arithmetic: +-*/%

e Logic (bitwise): ~&|”"

* Logical I && ||

* Shift >> << {,}

* Relational > < == |= >= <=

In shifting, the vacant bits are filled with
zeros

e L

Loop Statements

integer count

initial
initial _
initial begin
begin clock = 1'b0;
count = 0;
end
i <
while (count <16) repeat (16)

#5 count = count+1;
#5 clock = ~ clock;

end ond

Loop Statements

module decoder

input [1:0] IN;

output [3:0]Y;

reg [3:0]Y;

integer I;

always @(IN)

for (1=0; I<=3; I=1+1)

if IN==1) Y[I]=1;
else Y[l]=0;

endmodule

Synthesis

Logic synthesis tools interpret the source
code and translate it into an optimized
gate structure.

Statement like assign s=a&b is translated
into an AND gate

Statement like assign s=a+b is translated
into adder

Statemen like assign y=s? in_1:in_2is
translated into a 2-to-1 multiplexer

Synhesis

« Always may imply combinational or
sequential circuit based on the event
control expression (level or edge)
always @(L1 or LO or S)

if (S) Y=I1;
else Y=I0;
Is translated into a 2-to-1 multiplexer

* If the event control is “posedge”, that is a
synchronous sequential circuit

| Develop specification |

= I !
| HDL descrlptlon

| Slmulate/verlfy HDL
‘ testbench

Synthesis Gate |_Compare
netlist ‘/model
| Simulate netlist/model ll

Y

@ 2002 Prentice Hall, Inc. | Production masks
M. Morris Mano
DIGITAL DESIGN, 3e.

Algorithmic State Machine (ASM)

Initiates a sequence of
commands to the Data processing
datapath, may use status path, manipulates
conditions from the data in registers
datapath
/ Status conditions
Con [.mi Datapath
logic
..-_\;...,: |.=|.: t -'.-.el.;-\ul

Fig. 8-2 Control and Datapath Interaction

@ 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.

ASM

« ASM is similar to flowchart in the sense
that it specifies a sequence of procedural
steps and decision paths for an algorithm.

 However, ASM is interpreted differently
than a flowchart. While the flow chart is
interpreted as a sequence of operations,
ASM describes the sequence of events as
well as the timing relationship between the
states (as we will see shortly).

Name

Binary
code

Register operation

or output

(a) General description

Fig. 8-3 State Box

State Box

011

R«
START

¥

(b) Specific example

The state is given a symbolic name (T3) (name may be inside the box)

Binary code for the assigned state (011)

The operations that are performed in this state R<-0; and START could
be an output signal is generated to start some operation

Operation happens when the machine makes a transition from T3 to
next state

Decision Box

Exit path

Fig. 8-4 Decision Box

Conditional Box

I 001
Input to the decision box
must come from one of the
o)] exit paths of a decision
E box.
From exit path of decision box The register opera_tion or
(k<o) outputs listed inside the
A conditional box are
Register operation generated during a given
oroutput B state, if the input condition
>y y 010 is satisfied of course
FeFE
v . .
(a) General dl_‘h't_'fi]']li:\]l (b) Example with conditional box Dependlng on E’ R IS

cleared or left unchanged

Fig. 8-5 Conditional Box

1 ASM Block

EF =00 E=1

i
|

I

|

|

|

|

}

I

| EF=01
|

I

|

I

|

I

|

I

|

@

Fig. 8-7 State Diagram Equivalent to the ASM Chart of Fig. 8-6

ASM block is a structure consisting of one
state box and all the decision and
conditional boxes connected to its exit path.

Fig. 8-6 ASM Block

Each block in the ASM describes the state
of the system during one clock-pulse
interval.

The operations within the state and

conditional boxes are executed while the

system is in state T, The same clock pulse
transfer the systeminto T,, T5, or T,

Timing Consideration

Clock ‘ ‘

- Present state T > Next state =
(Tror Ty or Ty)

A

Positive edge of clock

Fig. 8-8 Transition Between States

Design Example

Design a system with 2 flip-flops E and F, and one 4
bit binary counter (A3, Ay, A, Ap).

A start signal initiates the operation by clearing A and
F

Then the counter is incremented by one starting from
the next clock pulse and continues to increment until
the operation stops. A; and A, determine the
operations.

If A, =0, E is cleared and continue

If A,=1, E is set; then if A;=0 continue, if A;=1 F is set to 1 on

the next clock cycle.
If start = 0, the system stays in the initial state,
otherwise repeat

Example

Status signals

A3
A2 l
clr E Datapath
2] set_E A
- Controller sel_F E
hY >
tart ——» W O
incr_ A F
AN A O
reset_b 2 Jl_ 4 |
clock
(a)
Note: A3 denotes A[3],
reset_b

A2 denotes Af2],
denotes nonblocking assignment
resel_b denotes active-low reset condition

reset_b
4
E-
A=
i A
E -
F 1
(1]
Asvnchron rset Synchronous
synchronous erse reset

10

Table 8.3

Sequence of Operations for Design Example

Counter Flip-Flops
Ay Ay A A E F Conditions State
0O 0 0 0 10 Ay =0,4;=0 s.1
0 0 0 | 0 0
0 0 | 0 0 0
0 0 1 | 0 0
0o 1 0 0 0 0 Ay =1,A3 =0
0 1 0 1 | 0
0 1 1 0 | 0
0 1 1 1 1 0
10 0 0) Ay =0,A; = 1
1 0 0 | 0 0
1 0 1 0 0 0
1 0 1 1 0 0
1 10 0 0 0 Ay =1, A3 = 1
1 1 0 1 1 0 52
1 1 0 1 | 1 S_idle
Figtee Mimiber: Tiske0d 03
ManoCilers QITEET] 22007 by Prentice Hal, Inc
Dvigitad Dhgsign, +¢ [A Pearsa Copany
Design_Example
Controller
Start Start set_E
clr_E
set_F
clr A_F
A, il Datapath
_: A.; iner_A
clock reset_b
reset_b L —7 Q £
>
—K
clock .
i [e) E
> ¢
K
-
4-bit counter with
synehronous clear
Ay Ay A) Ay [+
A
]

RTL Description

Start =10

Start =1

S_idle — 5_1, clr_A_F:

8.7 —w 5T e A

AA;=10
(a)

A=<— () F<—¢

A=— A+ 1

if (A, = 1) then set_E: E-<-—1
if (A, = 0) then elr_E: E-=—10
52 — S_idle, set_I* F%—
(b)
Table 8.4
State Table for the Controller of Fig. 8.10
Present Next
State Inputs State Outputs
%
Present-State d 8 N F &
Symbol G Go Start A; Az Gy Go] "':s] ""8 E
S_idle 0 0 0 X X 0 0 0 0 0 0 0
S_idle 0 0 1 X X 0 1 0 0 0 1 0
S_1 0 1 X 0 X 0 | 0 1 0 0 1
5.1 0 1 X 1 0 0 1 1 0 0 0 1
871 0 1 X 1 1 1 1 1 0 0 0 1
52 1 I X X X 0 0 0 0 1 0 0
Set E=S_1A,
DG,=S_1A,A;
CIr_E=S_1A,
DG,= S_1+S_ldle Start
Set_ F=S_,

Clr_A F=Start S_Idle

Incr_A=s_1

12

HDL Description

» The description could be on three different levels
— Behavioral description on the RTL level
— Behavior description on the algorithmic level
— Structural description

* Note that the algorithmic level, is used only to
verify the design in the early stages. Some
of the constructs might not be synthesizable

* Following RTL behavior description

13

Binary

Multiplier

Start ——= Controller

1 ! }
Datapath
| —

* We did this before 23 10111
using combinational 19 10011
circuit (adders, 10111
gaters, ..). 10111
Use one adder and 00000
shift registers. 00000
Instead of shifting 10111
multiplicand to the 437 110110101
left, shift the partial
product to the right.

A

Load_regs

shiftregs | 18

Y7 | e -

[Tt resel clock
l

Zero

Decr_P
o D c D L
Product

ol0)

(a)

Register B (Multiplicand) l Register P (Counter)

Tl ol]

III |I []|t}|[]|
0

X

16 15 s A 8 7 0
l]|l]|l]|U n|nItJI[J tllnlullln|1|1|l
9
C Register A (Sum) Register Q (Multiplier)

f

(b}

14

resel_b

A==0

C==10

B <= Multiplicand
@ == Multiplicr

P m_size

5_shift
Shift_regs

i [C A Q== [C A Q)==1

Zero = 1

Start =0

Start = 1

Zero =10
(a)

State Transition Register Operations
From To
S_idle Initial state
S_idle S_add A<=<=0,C<=0,P<=dp_widh
S_add S_shift P<=P-1

it (Qf0]ythen (A <= A+ B, C <= Cy,)
S_shift shift right {CAQ), C <=0

(b)

15

Table 8.6
State Assignment for Control

State Binary Gray Code One-Hot

S_idle 00 00 001
S_add 01 01 010
S_shift 10 11 100
Table 8.7
State Table for Control Circuit
Present Next
State Inputs State
“ “
=]] =]
& g e §: 2
Present-State s B 3 3 &
Symbol G, Gy Start QO] Zero G, G, & S a < S
S_idle 0 0 0 X X 0 0 1 0 0 0 0
S_idle 0 0 1 X X 0 1 1 1 0 0 0
S_add 0 | X 0 X | 0 0 0 1 0 0
S_add 0 1 X 1 X | 0 0 0 1 | 0
S_shift 1 0 X X 0 0 1 0 0 0 0 1
S_shift 1 0 X X I 0 0 0 0 0 0 1

HReady
[I
Start — —L (S_1die) To | Load_regs
. 0
P ¢ 2% 4
Decoder

: Add_regs
o .\':-.\':j‘_r:m- (S_add) T,
Logic T Decr P

Shift_regs
1 (S shif)y Ts
Zerg ——
H1HP

Gy Ty—

clock
reset_b

Using Sequence register and
a decoder

Next State Logic

Ready
Start b G (5_idle) T, 1 J Lok e
o0 | —_——
s 0
P Add_regs
(5 _add) Ty
Decr P
2% 4 Decoder
Zero i (S_shift) T Shifi_regs
ik
D
Gy Ty
¢t
v
clock
reser b

17

One-Hot Design

» Every state is represented by a flip flop
» Only one contains a value of 1 at any time

« Simple but uses more FF

‘ Ready
Start -
1p Sa .)
(S_idie) |Go
>c ‘
o —1
Add_regs
Lero 1 p ¥y i
D" T (8_add) Decr P
51
—T
Shift_regs
D l
(S_shift) |¢
> ¢
clock Rst
T

resel_b

Design with multiplexers

» The previous design consists of flip-flops,
decoder, and gates.

» Replacing gates with multiplexers results
in a regular pattern of the design.

— First level contains multiplexers (possibly
added gates, but only one level.

— The second level is the registers to hold the
present state information

— The last stage has a decoder that provides a
separate output for every state

~
.
J
*
-

© 2002 Prentice Hall. Ine. Fig. 8-19 Example of ASM Chart with Four Control Inputs
M. Morris Mano
DIGITAL DESIGN, 3e.

19

Multiplexer input condition

Present State
Gl GO

0

P P P RBP RP P O O O
P P P O O O LB B O O

next State
Gl GO

B P O P P O Fr B O O
B O B P O O LB O KL O

1P

cond.

inputs
MUX1

yz'+yz=y

y+y'z=y+z

MUX2

yz

yz+yz'=y

D

1
MUX1

s

S S

MUX select

2x4
decoder

=

@ 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.

CLK

S

Gy

— T
—T
T

Fig. 8-20 Control Implementation with Multiplexers

Counting the number of 1's

* The system counts the number of 1's in
R1, and set R2 accordingly.

e The bits in R1 are shifted one at a time,
checking if the shifted out bitis 1 or 0, and
incrementing R2

» Zis a signal to indicate if R1 contains all
0’s or not.

» E is the output of the flip-flop (the shifted
out bit).

X]
9
Ty 11 L]
1
< > 1]
1
© 2002 Prentice Hall, Inc.
M. Morris Mano Fig. 8-21 ASM Chart for Count-of-Ones Circuit

DIGITAL DESIGN, 3e.

21

@ 2002 Prentice Hall, Inc,
M. Morris Mano
DIGITAL DESIGN, 3e.

Ty l L]
Initial state

1

K1+ Input
R2+ Alll's

7 01
R R2+ 1

Fig. 8-21 ASM Chart for Count-of-Ones Circuit

@ 2002 Prentice Hall, Inc,
M. Morris Mano
DIGITAL DESIGN, 3e.

Start § Ty

E Control .

el 7.
Z=1if
Rl=10

(Check for
zeto

Parallel output

Serial input= ()

Shift left

Shift register R1 -
EL] 2] Load input
=
c< T
Input data

Output count

Count
-

. or 2 .
Counter R2 Load input

Inputs = All I's

Fig. 822 Block Diagram for Count-of-Ones

22

Control (counting of 1's)

Present Next Conditions MUX inputs
State State
G1 GO G1 GO MUX1 MUX2
0 0 0 0 S’
0 0 0 1 0 S
0 1 0 0 Z
0 1 1 0 z z 0
1 0 1 1 1 1
1 1 1 0 E’
1 1 0 1 E E’ E
0 —0
Z—1 Gy
MUXI1 D —
1 —2
13 . . 1 C
s) ‘51 “o
T
MUX select 2% 4 —T
) decoder T
—T3
s B T
0—1 Gy
MUX2 D]
1 —2
E—3 > C
CLK

@ 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.

Fig. 8-23 Control Implementation for Count-of-Ones Circuit

23

fe=1
=0, Y \x=0
[y=1,/"" =0\
- \\ |
Sx=1y=0"\
x=1 > 3 v xr=1
x=1Ly=1

Fig. P8-10 Control State Diagram for Problems 8-10 and 8-11

@ 2002 Prentice Hall, Inc,
M. Morris Mano
DIGITAL DESIGN, 3e.

@ 2002 Prentice Hall, Inc,
M. Morris Mano
DIGITAL DESIGN, 3e. Fig. P8-20 ASM Chart for Problems 8-20

24

